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Abstract:  In the resting state, EEG and fMRI have functional correlations in the low-frequency 

band, and integrating the two modalities can provide a more comprehensive understanding of brain 

activity. However, multimodal imaging faces challenges such as high cost and complexity of data 

fusion. In this study, we developed a Transformer-CNN to generate fMRI data from EEG signals 

and introduced spatial normalization to compensate for differences in brain structures between sub-

jects. Our results showed that the brain structures were normalized to the same extent, so that the 

model could focus only on predicting the signal values of fMRI, and compared with actual fMRI 

scans, we obtained PSNR of 25.92 and SSIM of 0.56, which were quantitatively and qualitatively 

evaluated. Although there are some qualitative limitations for medical device utilization, our ap-

proach opens new avenues in neuroscience, especially in environments where simultaneous EEG-

fMRI acquisition is not possible. This study highlights the potential of deep learning in advancing 

multimodal imaging and provides enhanced insights into brain function. 
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1. Introduction 

Understanding the intricate workings of the human brain is one of the most profound 

challenges in contemporary neuroscience. In this pursuit, integrating Electroencephalog-

raphy (EEG) and functional Magnetic Resonance Imaging (fMRI) has emerged as a pow-

erful multimodal approach [1,2]. Each technique offers unique advantages: EEG excels in 

capturing the rapid temporal dynamics of neural activity with millisecond-level precision, 

while fMRI provides detailed spatial localization of brain functions, offering insights into 

anatomical specificity [3,4]. Combining these techniques has the potential to overcome 

their limitations and yield a more comprehensive understanding of neural processes. De-

spite the promise of EEG-fMRI integration, several technical challenges hinder its wide-

spread adoption. Simultaneous acquisition of EEG and fMRI requires complex equipment 

setups, and the high cost of this technology further restricts accessibility. Furthermore, 

the fusion of data from these modalities poses difficulties, as EEG reflects direct electro-

physiological activity, while fMRI measures hemodynamic changes related to neural ac-

tivity [2,5]. Nevertheless, recent advances in deep learning have opened new avenues for 

overcoming these challenges by transforming EEG data into fMRI-like representations. 

Initial research has demonstrated the feasibility of this approach. For instance, models 

based on Auto-Encoders and Generative Adversarial Networks (GANs) have been em-

ployed to synthesize fMRI images from EEG data, revealing promising results [6]. Atten-

tion-based models have also been explored, showing fMRI patterns from generated im-

ages that align with known brain abnormalities, such as schizophrenia-associated regions 

in the prefrontal cortex and temporal lobes [1,2]. However, these methods often fail to 

fully capture the subtle functional correlations between EEG signals and fMRI networks 
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[7]. A key aspect of EEG-fMRI correlation lies in the relationship between low-frequency brain waves (e.g., alpha 

and beta bands) and the Resting State Networks (RSNs) observed in fMRI. Prior research has shown that specific 

oscillatory activity in the occipital region, detected through EEG, corresponds with functional connectivity pat-

terns within RSNs [8]. This highlights the importance of embedding such neuroscientific insights into the gener-

ative models to improve the accuracy of fMRI synthesis. 

In this study, we propose an advanced framework for EEG-to-fMRI generation that explicitly integrates these 

neuroscientific correlations. Our model focuses on transforming resting-state EEG data into time-frequency spec-

trograms after filtering for low-frequency brain waves. We employ a Transformer-CNN architecture as our gen-

erative model, building on recent advancements in deep learning. Additionally, we use a U-Net model as a com-

parative generative architecture [9]. Unlike previous studies that primarily emphasize model performance, our 

work prioritizes the neuroscientific validity of the generated fMRI data, aiming to bridge the gap between EEG 

signals and corresponding fMRI networks. This work represents a step toward more accurate and interpretable 

EEG-to-fMRI synthesis, with potential applications in multimodal neuroimaging research. By capturing both the 

temporal and spatial aspects of brain activity, this framework could contribute to a deeper understanding of the 

brain's functional architecture, especially when simultaneous acquisition of EEG and fMRI is not feasible. 

2. Materials and Methods 

2.1. Dataset 

We use the freely available public NODDI dataset for resting multimodal brain studies, which has received eth-

ical approval from the UCL Research Ethics Committee [8]. This dataset consists of EEG-fMRI pairs recorded 

simultaneously during resting state from a group of 16 patients. The EEG was acquired using a 64-channel MR-

compatible electrode cap to ensure that the measurements are compatible with the MRI environment. The fMRI 

was acquired in 300 volumes with TR/TE=2160/30ms. The scans were acquired in 30 slices of 64x64 size with a 

voxel size of 3.3x3.3x4.0 mm, providing high spatial resolution for precise localization of neural activity. Figure 

1 shows EEG and fMRI samples from this dataset, highlighting the alignment and integration of EEG and fMRI 

for simultaneous analysis. 

 

 
 
Figure 1. EEG and FMRI samples from dataset. 

 

During the early stages of fMRI acquisition, signal intensity fluctuations occur in the acquired images due to 

T1 relaxation effects. These fluctuations were eliminated by excluding the first five volumes from the analysis [8]. 

The dataset can be downloaded from https://osf.io/94c5t/. 

2.2. Data Preprocessing 

2.2.1.EEG 

The aim of the EEG preprocessing is to transform raw EEG signals into spectrograms organized by channels and 

frequency bands, as outlined in the introduction. The preprocessing pipeline, illustrated in Figure 2, consists of 

four main steps: data cropping, frequency filtering, sampling adjustment, and spectrogram generation [10, 11]. 

 

https://osf.io/94c5t/
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Figure 2. EEG Preprocessing pipeline. 

In the first step, the EEG data is segmented in the time domain to align with each fMRI volume. Since the fMRI 

data is captured at intervals corresponding to a repetition time (TR) of 2.16 seconds, the EEG data is divided into 

segments that correspond to these intervals. EEG data associated with the initial 5 fMRI volumes, as described in 

Section 2.1, are excluded from further analysis to minimize any initial noise or instability. 

The second step involves isolating the EEG signals within a defined low-frequency range. A band-pass filter is 

applied to retain frequencies between 1 and 30 Hz, which include brainwave bands commonly used in neurosci-

ence: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). This ensures that the EEG data reflects 

the relevant frequency bands associated with neural activity [10]. 

In the third step, the sampling rate of the EEG data is adjusted to reduce the data volume and improve pro-

cessing efficiency. The original EEG recordings, sampled at 5000 Hz, are down- sampled to 1000 Hz. This reduc-

tion minimizes computational overhead while retaining sufficient temporal resolution for subsequent analysis. 

In the final step, a Fourier transform is applied to the channel-specific EEG data, converting it from the time 

domain to the frequency domain [11]. This process generates spectrograms in the format of (channel x frequency 

x time). For use in deep learning model training, a time averaging technique is applied to compress the time axis, 

resulting in a data format of (channel x frequency). This transformation captures detailed frequency dynamics 

across EEG channels, facilitating more accurate neuroscientific analysis. This preprocessing workflow efficiently 

transforms raw EEG data into spectrograms, capturing key frequency information that is crucial for the subse-

quent EEG-to-fMRI generation model. 

2.2.2. fMRI 

Spatial normalization is a key process in aligning brain images to a standardized space, enabling consistent anal-

ysis across different subjects [12]. This step is essential for ensuring that structural patterns are uniformly learned 

in deep learning model training. The fMRI preprocessing pipeline, summarized in Figure 3, consists of three 

stages: linear registration, non-linear registration, and masking. The MNI152 template, with dimensions of 

91x109x91 and a voxel size of 2 x 2 x 2 mm, is used as the standard reference for spatial normalization [13]. 
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Figure 3. FMRI Preprocessing pipeline. 

In the first stage, linear registration is applied to align the fMRI data with the MNI152 template. This step 

corrects for differences in brain structure, size, and spatial position between the fMRI data and the template. The 

Affine Transform algorithm is employed to perform this alignment, ensuring that the fMRI data matches the 

standard template in basic structural terms [14]. 

After linear registration, non-linear registration is used to address more complex differences in brain structure 

and shape that cannot be fully corrected through linear alignment. The Symmetric Normalization algorithm is 

applied to transform the fMRI data to closely match the shape of the standard brain structure in the MNI152 

template [15]. This step ensures more precise normalization, accommodating individual anatomical variability. 

The final step is masking, where non-brain tissues such as the skull are removed from the fMRI data. Instead 

of using FSL’s conventional single-volume skull stripping method, which can be time-consuming, we utilize a 

more efficient approach that leverages a brain mask derived from the MNI152 template. This mask is transformed 

into the same space as the fMRI data, quickly eliminating non-brain areas while preserving the brain structure. 

After the masking step, the fMRI data is resized back to its original dimensions of 64 x 64 x 30 to ensure com-

patibility with subsequent analyses. This step retains the necessary spatial resolution for accurate brain mapping 

and functional connectivity studies. This comprehensive preprocessing pipeline standardizes the fMRI data, pre-

paring it for deep learning model training and further neuroscientific investigations. 

2.3. Transformer-CNN model 

2.3.1. Model structure 

We propose a method of fMRI synthesis from EEG using Transformer-CNN, as shown in Figure 4, which is a 

combination of an autoencoder (CAE) composed of convolutional layers and a Transformer [16,17]. The model is 

trained through two processes, the first is pre-training of the Convolution Auto Encoder (CAE). The CAE learns 

the process of reconstructing fMRI volumes as input [17]. This aims to utilize the powerful pre-training 

knowledge of fMRI to reduce the modality difference between EEG and fMRI. 

The second is to learn the process of fMRI synthesis from EEG by combining the Transformer and CAE. The 

fMRI data used in the current process and the previous process is the same data to efficiently learn the Trans-

former based on the pre-learning knowledge of CAE. Transformer utilizes both the Encoder-Decoder structure, 

and the input of the encoder is an EEG spectrogram, and it consists of a Multi-head attention and Feedforward 

neural network, while the decoder takes a continuous volume of fMRI as input, and it consists of a Multi-head 

attention 2-layer and a Feedforward neural network [16]. 

Transformer encoder embeds the EEG spectrogram and tokenizes it for input and processing. The decoder uses 

the pre-trained CAE encoder as an embedding network to tokenize the fMRI and input it. At this time, the multi-

head attention in the second layer of the decoder is a cross-attention layer that also receives the output of the 

encoder and reflects important information of the EEG. The processed output of the decoder is input to the CAE 

decoder to generate a synthetic fMRI. In the training phase, both EEG and fMRI are input to learn the relationship 

between the two modalities, and in the test phase, without inputting fMRI, previously predicted tokens are ac-

cumulated through the autoregressive method of the Transformer and input to the decoder. 
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Figure 4. Transformer-CNN architecture. 

2.3.2. Model evaluation methods 

In this study, the dataset comprises EEG-fMRI pairs obtained from 16 patients, each contributing 295 pairs of 

data, resulting in a total of 4720 samples. To ensure a robust evaluation of the model, the dataset was split into 

training, validation, and testing sets using a ratio of 0.5:0.25:0.25. Specifically, 2360 samples were allocated for 

training, 1180 for validation, and 1180 for testing. 

The training process was conducted over 100 epochs, employing Mean Squared Error (MSE) as the loss func-

tion to minimize the difference between the predicted and actual fMRI data. The model optimization was per-

formed using the Adam optimizer with a learning rate of 1 × 10⁻⁵, ensuring stable convergence during training. 

Additionally, two key metrics were used to evaluate the performance of the model: Peak Signal-to-Noise Ratio 

(PSNR) and the Structural Similarity Index Measure (SSIM) [18,19]. PSNR measures the fidelity of the recon-

structed fMRI data, while SSIM assesses the perceptual similarity between the generated fMRI images and the 

ground truth. This experimental setup, including the dataset split, optimization strategy, and evaluation metrics, 

ensures that the model is rigorously trained and tested, allowing for accurate assessment of its ability to synthe-

size fMRI data from EEG inputs. 

3. Results 

Figure 5 illustrates the progression of Loss, PSNR, and SSIM values over the course of training, providing insight 

into the model's learning effectiveness. As training progresses, the Loss consistently decreases, while PSNR and 

SSIM values increase, reflecting the model's improved ability to reconstruct high-quality fMRI images from EEG 

data. The alignment of trends between the training and validation sets demonstrates that the model is generaliz-

ing well to unseen data, with no signs of overfitting. The stability of the PSNR and SSIM values towards the final 

epochs indicates that the model converges effectively, generating fMRI images that are both high in fidelity and 

structurally similar to the ground truth. This suggests that the model successfully captures the underlying map-

ping between EEG and fMRI modalities. 
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Figure 5. Learning-Validation Loss, PSNR, SSIM Graph. 

 

Table 1 presents the performance metrics for the test results, providing insight into the quality of the fMRI 

images generated from EEG data. A PSNR value of 25.92 dB suggests a moderate level of similarity between the 

generated and actual fMRI images. While the generated images are of reasonable quality, they fall short of achiev-

ing the high fidelity required for more precise applications. Similarly, the SSIM score of 0.56 indicates a moderate 

degree of structural similarity. Although the generated fMRI images capture some key structural features, no-

ticeable differences remain when compared to the ground truth. These metrics suggest that while the model is 

effective at producing general fMRI patterns, further refinement is needed to enhance the accuracy and structural 

integrity of the generated fMRI data for more nuanced neuroscientific applications. 

Table 1. The quantitative results of the proposed model 

Loss PSNR SSIM 

0.20899 25.92 0.56 

 

In a previous study, David Calhas et al. used the same NODDI dataset in both studies. In their work using 

autoencoders (AE), generative adversarial networks (GANs), and Wasserstein GANs (WGANs), they processed 

EEG with Short-Time Fourier Transform (STFT) and applied logarithmic scaling and 3x down sampling to fMRI 

[17]. In his subsequent work, they used an encoder-decoder architecture model combining Resnet and Attention, 

processed EEG with STFT, omitted any preprocessing process for fMRI, and focused on the lesion classification 

task in the synthetic fMRI rather than on fMRI synthesis [7]. However, we improved the performance of fMRI 

synthesis by processing STFT for each frequency band such as delta, theta, and alpha and integrated the brain 

structures across subjects through spatial normalization of fMRI. Model comparison was excluded because the 

data preprocessing methods and objectives were not consistent. To assess the quality of the transformed fMRI 

(predicted) data compared to the actual fMRI, three types of visualizations were conducted. These visual com-

parisons in this figure highlight the model’s ability to approximate key features of the brain. 

The generated fMRI images capture the overall shape and main characteristics of the brain regions quite well. 

However, some predictions exhibit slight blurring or smoothing, a common artifact in generated images. While 

the predictions retain a reasonable amount of detail, certain finer features may appear less pronounced compared 

to the ground truth. This suggests that although the model effectively reconstructs the essential structures of the 

brain, further refinement is needed to enhance the precision of finer details in the predicted fMRI images. 
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Figure 6. FMRI prediction and target comparison. 

The second type of comparison involved analyzing the average BOLD signal across different brain regions, 

utilizing the Harvard-Oxford cortical and subcortical atlas for brain parcellation [20-22]. Figure 8 illustrates the 

results of comparing the generated and actual BOLD signals. The generated predictions (represented by the blue 

line) closely follow the overall trend of the ground truth data (orange line). However, the ground truth contains 

several high peaks that are less pronounced in the predicted signals. This indicates that the model tends to smooth 

out some of the natural variability observed in the ground truth, reducing the prominence of extreme peaks. This 

suggests that while the model effectively captures the general trend of BOLD signal fluctuations, it may under-

estimate the intensity of certain high-amplitude events or more extreme variations in the actual data. Specifically, 

for the Frontal Pole region, the predictions align well with the general pattern, but the model appears to minimize 

the impact of abrupt changes. This smoothing effect points to a potential area for improvement in better capturing 

the full range of BOLD signal dynamics. 

 

Figure 7. Harvard-Oxford cort maxprob thr25 2mm [20, 23]. 
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Figure 8. Bold Signals comparison. 

 

The third type of comparison involved visualizing the correlation matrix of extracted BOLD signals between 

various brain regions to analyze the inter-regional relationships. Figure 9 presents the comparison between the 

predicted and actual correlation matrices. The correlation matrix reflects how BOLD signals from different brain 

regions relate to each other, and comparing these matrices helps evaluate the model's ability to replicate func-

tional connectivity patterns observed in the actual fMRI data [24]. The predicted correlation matrix generally 

captures similar patterns to the actual matrix, indicating that the model can approximate the relationships be-

tween different brain regions to a reasonable extent. However, there may be subtle differences in the strength 

and distribution of correlations, suggesting areas where the model could improve its fidelity in capturing the 

intricate connectivity dynamics across the brain. Overall, this comparison highlights that the model performs 

well in preserving the broad structure of inter-regional correlations but may smooth or underrepresent some 

finer connectivity details. 

 
(a)                                       (b) 

Figure 9. Correlation matrix comparison : (a) Prediction ; (b) Ground Truth. 

4. Discussion 

The study proposed a framework to generate fMRI data from EEG recordings, aiming to establish the neurosci-

entific relationship between these two modalities. The methodology involved filtering EEG data into the low-

frequency bands and transforming the signals into spectrograms, which were then processed by a Transformer-

CNN model. The model achieved a Peak Signal-to-Noise Ratio (PSNR) of 25.92 dB and a Structural Similarity 

Index Measure (SSIM) of 0.56. While these metrics indicated a moderate level of similarity between the generated 

and actual fMRI data, there was still a noticeable qualitative disparity. In particular, the analysis of brain func-

tional networks revealed limitations, as the accuracy was reduced in comparisons of average BOLD signals across 

brain regions and in the correlation matrix visualizations. 
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Despite these challenges, the study demonstrated the feasibility of generating fMRI from EEG data. There is 

considerable potential for improvement in the proposed Transformer-CNN model. Enhancing performance 

could be achieved through advanced training techniques, refinements in model architecture, and more rigorous 

data preprocessing. One possible improvement is to perform denoising in the postprocessing step to improve the 

quality of the generated fMRI images. Additionally, leveraging models such as Super-Resolution GAN (SRGAN) 

[25] could further improve the resolution and overall quality of the generated fMRI images, bringing them closer 

to actual fMRI outputs. This paves the way for future work in developing more accurate multimodal neuroim-

aging models. 
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