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Abstract:  Positivity, negativity, and wave-particle duality are fundamental properties in existence. 

Assuming the existence of a complex point charge with these properties, a spherical standing wave 

model is derived. This spherical standing wave is a spherically symmetric standing wave that reso-

nates between the inner and outer radii. The inner radius does not become zero; therefore, no self-

energy divergence problem exists. Since it has complex amplitude corresponding to voltage (scalar 

potential) and current (vector potential), it is compatible with quantum theory that also has complex 

amplitude. An electron model is assumed to be a spherical standing wave with an electron classical 

radius as the inner radius, a Bohr radius as the outer radius, and an elementary charge as the size 

of wave source. This study obtains energy and resonance conditions from an equivalent resonance 

circuit. The derived formulas include the Compton wavelength, electron mass, ionization energy, 

and Rydberg constant. Thus, the calculated values were consistent with existing physical constants. 

Keywords:  spherical wave, complex amplitude, Bohr radius, electron classical radius, fine struc-

ture constant, Compton wavelength, electron mass, ionization energy, principal quantum number, 

Rydberg constant 

 

1. Introduction 

A sphere is among the most fundamental forms found in nature. Therefore, spherical 

waves are more appropriate than plane waves when considering waves inherent in nature 

or those that resonate with it. Electrons are not only representative of point charges but 

they also exist with waves. Electrons as point charges suffer from the self-energy diver-

gence problem at the center [1]. Milo Wolff proposed a spherical standing wave with the 

form 𝑒𝑖𝜔𝑡 sin 𝑘𝑟 𝑟⁄  as an electron model by subtracting the outward spherical wave from 

the inward spherical wave. The amplitude becomes finite when 𝑟 = 0 [2-4]. 

The spherical standing wave proposed herein is a spherical wave (outward or inward) 

with a complex amplitude. It has two types of standing waves inside, namely, pressure 

and flow [5]. The inner and outer radii are determined by the resonance condition, and an 

important feature here is that waves exist only between them. The inner and outer radii, 

frequency (wave number), and energy have a close relationship defining other parameters 

with respect to each other [6]. The inner radius does not become zero; therefore, no self-

energy divergence problem exists. 

So far, quantum theory has developed at the expense of meaning and representation. 

However, searching for the possibility of describing elementary particles such as electrons 

using macroscopic structures is important because this world might be designed so that 

humankind could easily understand even at the level of quantum mechanics. For example, 

Shuichi Iida's VR electron model was such an attempt, where the electron was modeled 

as having a ring-like structure [7]. In this paper, a spherical standing wave is postulated 

as the electron model, and we consider its consistency with various parameters derived 
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from conventional quantum mechanics. This paper was revised as a technical report of a previous study [8]. 

2. Fundamental wave of the spherical standing waves 

The scalar field 𝜙(𝑟, 𝑡), wherein the distance from the center is r and the time variable is t, can express the scalar 

potential 𝜙 of a spherical wave as follows: 

𝜙(𝑟, 𝑡) =
𝑞0𝑒

𝑖(𝜔𝑡∓𝑘𝑟)

4𝜋𝜀0𝑟
 (1) 

where i is the imaginary unit; e is the base of the natural logarithm; 𝜀0 is the vacuum permittivity; 𝜔 is the 

angular frequency representing the temporal phase; and k is the wave number representing the spatial phase. 

The spherical wave amplitude is inversely proportional to the distance r from the center. The equivalent of the 

proportionality constant is the amplitude coefficient 𝑞0, i.e., 𝑞0 is a constant representing the size of the spheri-

cal wave source. 

However, the scalar field in Eq. (1) is also the sum of the phase potential added to the electrostatic potential 

created by charge 𝑞0. In the phase term 𝑒𝑖(𝜔𝑡−𝑘𝑟), the iso-phase surface moves along the direction in which the 

radius r increases with time t. Therefore, it represents an outwardly directed spherical wave. Similarly, the phase 

term 𝑒𝑖(𝜔𝑡+𝑘𝑟) represents an inwardly directed spherical wave and may also be regarded as the delayed (or ad-

vanced) potential of charge variation with respect to time 𝑞 = 𝑞0𝑒
𝑖𝜔𝑡 . 

The angular frequency 𝜔 representing the temporal phase and the wave number k representing the spatial 

phase are related by 𝜔 = 𝑘𝑐. The constant c is a constant representing the speed at which the wave propagates. 

In the case of electromagnetic waves, it is generally a constant representing the speed of light. 

According to the exact solution of the Maxwell equation for a spherical wave, the current and displacement 

current in a spherically symmetric spherical wave are in opposite directions with respect to one another and no 

magnetic field is generated [9]. Moreover, from a wave perspective, a spherical wave with a complex amplitude 

can be identically deformed as shown in Eq. (2). The inner portion of the wave shows that it comprises a voltage 

standing wave and a standing wave corresponding to the current [5]. 

𝜙(𝑟, 𝑡) =
𝑞0𝑒

𝑖𝜔𝑡

4𝜋𝜀0𝑟
cos 𝑘𝑟 +

𝑞0𝑒
𝑖(𝜔𝑡∓𝜋 2⁄ )

4𝜋𝜀0𝑟
sin 𝑘𝑟 (2) 

Figure 1. A circuit equivalent to a concentric spherical cavity resonator. a: inner radius; b: outer radius; C: capacitance of 

spherical capacitor; L: inductance of linear coil.  

2.1. Energy and resonance conditions of the spherical standing wave 

Consider a concentric spherical cavity surrounded by radii a and b (a < b) (Fig. 1). The energy density is expressed 

as follows [6]: 

𝜀0
2
(∇𝜙) ∙ (∇𝜙∗) =

𝑞0
2

32𝜋2𝜀0
(
1

𝑟4
+
𝑘2

𝑟2
) (3) 

where 𝜙∗ is the complex conjugate of 𝜙. The total energy 𝑈 is obtained by computing the definite integral on 

the spherical shell 4𝜋𝑟2𝑑𝑟 of the section in which the wave exists [a, b]. 

𝑈 = ∫
𝜀0
2
(∇𝜙) ∙ (∇𝜙∗)4𝜋𝑟2

𝑏

𝑎

𝑑𝑟 =
𝑞0
2

8𝜋𝜀0
(
1

𝑎
−
1

𝑏
) +

𝑞0
2

8𝜋𝜀0
𝑘2(𝑏 − 𝑎) (4) 

We obtained the following using the 1 𝑐2⁄ = 𝜀0𝜇0 relation: 
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𝑈 =
𝑞0
2

8𝜋𝜀0
(
1

𝑎
−
1

𝑏
) +

𝜇0
8𝜋
𝑞0
2𝑘2𝑐2(𝑏 − 𝑎) (5) 

The first term on the right-hand side of Eq. (5) is equivalent to the electrical energy 𝑞0
2 2𝐶⁄  when the charge 𝑞0 

is stored in a capacitor of capacitance 𝐶 = 4𝜋𝜀0(1 𝑎⁄ − 1 𝑏⁄ )−1. The second term on the right side of Eq. (5) is 

equivalent to the current energy 𝐿(𝜔𝑞0)
2 2⁄  when a current 𝜔𝑞0(= 𝑘𝑐𝑞0) flows through a coil with inductance 

𝐿 = (𝜇0 4𝜋⁄ )(𝑎 − 𝑏). In a resonance state, if both energies are observed to be equal, then 

𝑘2𝑎𝑏 = 1 (6) 

and the resonance conditions are obtained [6]. 

3. Application to electron model 

Consider the spherical standing wave as an electron model. First, let the magnitude of the spherical standing 

wave source be the elementary charge 𝑞𝑒, inner radius a be the electronic classical radius 𝑟𝑒 , and outer radius b 

be the Bohr radius 𝑎0. 

𝑟𝑒 =
𝑞𝑒
2

4𝜋𝜀0𝑚𝑒𝑐
2
 ⇒ 𝑎, 𝑎0 =

4𝜋𝜀0ℏ
2

𝑚𝑒𝑞𝑒
2
 ⇒ 𝑏 (7) 

Moreover, the fine structure constant [10] is expressed as 𝛼 = 𝑞𝑒
2 4𝜋𝜀0ℏ𝑐⁄ , Henceforth, the expression 

𝑎 = 𝛼2𝑏 (8) 

will be used for the relationship obtained. In this paper, the inner radius a and outer radius b represent the clas-

sical electron radius and Bohr radius, respectively. 

From Eqs. (6) and (8), the wave number k is obtained as 

𝑘 =
1

√𝑎𝑏
=
1

𝛼𝑏
  (9) 

When the wavelength corresponding to this wave number k is calculated, it matches the Compton wavelength of 

the electron. 

3.1 Total energy and mass of the electron 

From Eqs. (5) and (8), the total electron energy 𝑈 is given as 

𝑈 =
𝑞𝑒
2

8𝜋𝜀0
⋅
1

𝑎
(1 − 𝛼2) +

𝜇0
8𝜋
𝑞𝑒
2𝑘2𝑐2𝑏(1 − 𝛼2) (10) 

When the resonance condition 𝑘2𝑎𝑏 = 1 is satisfied, the electrical and current energies become equal and may 

be expressed as 

𝑈 =
𝜇0
4𝜋
𝑞𝑒
2𝑘2𝑐2𝑏(1 − 𝛼2) (11) 

From the equivalence of energy and mass, mass m is expressed as 

𝑚 =
𝑈

𝑐2
=
𝜇0
4𝜋
𝑞𝑒
2𝑘2𝑏(1 − 𝛼2) (12) 

When this mass is calculated, it matches the existing electron mass within the range of four significant figures. 

Although they are essentially in agreement, the electron model value is slightly smaller than the existing elec-

tron mass by approximately 0.005%. The fine structure constant is usually called the electromagnetic interaction 

coupling constant. Assuming that the term proportional to 𝛼2 is the energy required for the interaction, the mass, 

m', can be expressed as 

𝑚′ =
𝜇0
4𝜋
𝑞𝑒
2𝑘2𝑏 (13) 

When the mass, m', is calculated, it matches the existing physical constant, electron mass [11]. 
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This is probably because the existing electron mass is based not on the zero energy, but rather on the energy 

(mass) of the interactable state. The energy 𝑈′ corresponding to mass m' is obtained by omitting the term pro-

portional to 𝛼2 in Eq. (10): 

𝑈′ =
𝑞𝑒
2

8𝜋𝜀0
⋅
1

𝑎
+
𝜇0
8𝜋
𝑞𝑒
2𝑘2𝑐2𝑏 (14) 

3.2 Ground-state electronic model 

In the energy calculation for the spherical standing wave in Eq. (4), we consider the case where the wave is only 

between the radii a and b. Figure 2 shows the model in that state. 

 

  

Figure 2. OFF-state electron model. The pale red (gray) 

area shows the voltage amplitude. The arrow on the hor-

izontal axis depicts the current range (displacement cur-

rent in the direction opposite to the current direction). 

Figure 3. ON-state electron model. The switch of the cur-

rent source is closed. The voltage amplitude exists from a 

to infinity. The current exists from 0 to b.  

 

An LC circuit as an equivalent circuit, if it is connected to an external circuit, can be considered as an LC parallel 

circuit. In such an LC parallel circuit, the impedance seen from the outside takes the maximum value at the time 

of resonance. The existence of a wave source (current source) is implicitly assumed to be at the center of the 

spherical wave, but at resonance, the switch with that current source can be considered open. Thus, this state is 

called the OFF state and considered to be the so-called “zero energy state.” It is the lowest in energy and repre-

sents the ground state of an electron. 

3.3 Electron model of the ionic state 

When considering the existence of electrons as a cause of phenomena, such as static electricity, the spatial range 

of the existence of the electrical field created by the charge of the electrons is thought to have spread to some 

extent. 

Equation (5), which represents the energy of a spherical standing wave, is the sum of the electrical and current 

energies. Electrical energy greatly depends on the inner radius a, and the effect of the outer radius b is small. 

Conversely, the current energy greatly depends on the outer radius b, while the effect of the inner radius a is 

small. The energy 𝑈′ in Eq. (14) is obtained by calculating the electrical energy up to 𝑏 = ∞. The current energy 

corresponds to that calculated from 𝑎 = 0. 

Therefore, consider the case where an electric field, such as static electricity, is generated outside the outer 

radius b of the spherical standing wave (Fig. 3(a)). This is a case where a quasi-electrostatic wave has no current 

component, i.e., without movement of the equi-phase plane. However, the resonance condition does not change 

and has the same wave number k. Here, the same amount of current energy as the increased electric energy must 

be generated. This dual current energy is thought to broaden the range of existence from the inner radius a to the 

origin 0 (Fig. 3). Thus, the switch between the current source and the equivalent circuit is considered to be in the 

closed state, and the state is called the ON state. 
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In the OFF state, the outer radius b becomes a discontinuous surface of the electric field, and it appears as if a 

surface charge is generated there. Conversely, in the ON state, the outer radius b is no longer a discontinuous 

surface of the electric field and the surface charge generated in the OFF state appears as if it has moved to infinity. 

In chemistry, this ON state is considered to be an “ionized state,” which is said to be a state wherein “+ ions and 

electrons are lost.” 

3.4 Total energy of the ionic state 

The energy 𝑈′ in Eq. (14) is thought to be the total energy of the ionic state. The energy density that generates 

this energy is expressed as 

𝜀0
2
(∇𝜙) ∙ (∇𝜙∗) =

𝑞𝑒
2

32𝜋2𝜀0
×

{
 

 
𝑘2 𝑟2⁄ [0, 𝑎]

1

𝑟4
+
𝑘2

𝑟2
[𝑎, 𝑏]

1 𝑟4⁄ [𝑏,∞]

 (15) 

However, there is not one potential candidate that can produce such an energy density. For example, in terms of 

the electric field generated outside the outer radius b, the electrostatic potential 𝑞𝑒 4𝜋𝜀0𝑟⁄  generated by the 

charge 𝑞𝑒 is one of the candidates from the viewpoint of energy only. From the wave continuity, the potential 

𝑞𝑒𝑒
𝑖𝜔𝑡 4𝜋𝜀0𝑟⁄  that does not involve the equi-phase plane movement in the r direction, but changes the phase in 

time is a promising candidate. 

The electric energy 𝑈𝑒
′  in the interval [𝑎,∞] and the current energy 𝑈𝑖

′ in the interval [0, 𝑏] are expressed as 

𝑈𝑒
′ =

𝑞𝑒
2

32𝜋2𝜀0
∫ (

1

𝑟4
)

∞

𝑎

4𝜋𝑟2𝑑𝑟 =
𝑞𝑒
2

8𝜋𝜀0
⋅
1

𝑎
  (16) 

𝑈𝑖
′ =

𝑞𝑒
2

32𝜋2𝜀0
∫ (

𝑘2

𝑟4
)

𝑏

0

4𝜋𝑟2𝑑𝑟 =
𝑞𝑒
2

8𝜋𝜀0
𝑘2𝑏  (17) 

Equations (16) and (17) present the maximum values of the electrical and current energies, respectively. When 

𝑘2𝑎𝑏 = 1 satisfies the resonance condition in Eq. (6), the two are equal, and their sum is equal to the total energy 

𝑈′ in Eq. (14). 

 

Figure 4. Outer radius and wave number after transition. n is the natural number. When the wave number changes from k to 

k/n, the outer radius changes from b to n2b.  

3.5 Resonance conditions and state transition 

Consider the case where the basic parameters of a spherical standing wave, wave number k, inner radius a, and 

outer radius b change due to transition. After transition, let k' be the wave number, a' the inner radius, and b' the 

outer radius. The resonance condition after transition is maintained: 

𝑘′2𝑎′𝑏′ = 1 (18) 

where n is a natural number and wave number k' is the case where the original wave number k is divided by n. 

Assuming that the inner radius 𝑎′ = 𝑎 remains unchanged, the outer radius after transition 𝑏′ = 𝑛2𝑏 is given 

by Eqs. (6) and (18) [12]. Figure 4 shows the relationship between the outer radius and wave number after the 

transition. This transition is called the n state. 

The electrical energy 𝑈𝑒(𝑛) and current energy 𝑈𝑖(𝑛) in section [𝑎, 𝑛2𝑏] transitioning to the n state are as 
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𝑈𝑒(𝑛) =
𝑞𝑒
2

32𝜋2𝜀0
∫ (

1

𝑟4
)

𝑛2𝑏

𝑎

4𝜋𝑟2𝑑𝑟 =
𝑞𝑒
2

8𝜋𝜀0
(
1

𝑎
−

1

𝑛2𝑏
)  (19) 

𝑈𝑖(𝑛) =
𝑞𝑒
2

32𝜋2𝜀0
∫ (

𝑘2

𝑟4
)

𝑛2𝑏

𝑎

4𝜋𝑟2𝑑𝑟 =
𝑞𝑒
2

8𝜋𝜀0
⋅
𝑘2

𝑛2
(𝑛2𝑏 − 𝑎)  (20) 

In the n state, the wave range extends to 𝑛2𝑏; however, the wave only exists in interval [𝑎, 𝑛2𝑏]; therefore, it is 

equivalent to the energy in the OFF state as in the case in Fig. 2. 

 

 

Figure 5. Principal quantum number dependence of ionization energy. The horizontal axis represents the distance from the 

center, while the vertical axis represents the energy in electron volts [eV].  

3.6 Principal quantum number dependence of the ionization energy 

Consider the ON state further after transition to n state. This state is considered to be ionization in n state. If the 

electric energy in this case is 𝑈𝑒
′(𝑛), it is equal to the maximum value 𝑈𝑒

′  of the electric energy in Eq. (16) because 

the electric energy exists in section [𝑎,∞]. 

The energy difference between the ON and OFF states in the n state is expressed as 

𝑈𝑒(𝑛) − 𝑈𝑒
′ = −

𝑞𝑒
2

8𝜋𝜀0
⋅
1

𝑛2𝑏
  (21) 

This equation demonstrates the principal quantum number dependence of the ionization energy of electrons. 

Moreover, Eq. (21) divided by 𝑞𝑒 provides the ionization energy in electron volts. Fig. 5 shows the dependence 

of the ionization energy on the principal quantum number [13]. The energy takes a negative value because it is 

based on the maximum value of the electrical energy 𝑈𝑒
′ . 

3.7 Derivation of the Rydberg constant 

Let n and m be natural numbers (where n > m) and determine the difference in electrical energy when transition-

ing from the n state to the m state. 

𝑈𝑒(𝑛) − 𝑈𝑒(𝑚) =
𝑞𝑒
2

8𝜋𝜀0𝑏
(
1

𝑚2
−
1

𝑛2
)  (22) 

Think of this as the energy of the emitted light. If the angular frequency of light is 𝜔𝑛𝑚 and the Planck constant 

is ℏ = ℎ 2𝜋⁄ , the photon energy equals ℏ𝜔𝑛𝑚. Using the relationship of 𝜔𝑛𝑚 = 2𝜋𝑐 𝜆𝑛𝑚⁄  and expressing it as the 

reciprocal of the wavelength, 𝜆𝑛𝑚, 

1

𝜆𝑛𝑚
= 𝑅∞ (

1

𝑚2
−
1

𝑛2
) , 𝑅∞ =

𝑞𝑒
2

16𝜋2𝜀0𝑏ℏ𝑐
  (23) 

and an equation representing the so-called spectral series of hydrogen atoms is derived. Here, 𝑅∞ represents the 

Rydberg constant (Bohr radius is represented by b) [10]. Additionally, using the fine structure constant, 𝛼 =

𝑞𝑒
2 4𝜋𝜀0ℏ𝑐⁄ , 
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𝑅∞ =
𝛼

4𝜋𝑏
  (24) 

can be expressed. Moreover, the light is absorbed if n < m. 

4. Conclusions 

Table 1 shows the correspondence with the Bohr model [14]. Table 2 shows the calculation formulas and values 

of the model in this study. The values were calculated to 11 significant figures using the 2022 CODATA recom-

mended values [15]. All the digits matched the existing physical constants. 

Table 1. Comparison between the Bohr and spherical standing wave models 

Electron (Bohr model) Spherical standing waves 

Elementary charge  Wave source size 

Bohr radius Outer radius 

Classical electron radius Inner radius 

Compton wavelength Wavelength 

Mass Total energy / c2 

Quantum condition Resonance condition 

Spin (up/down) (Outward/inward) spherical wave 

Table 2. Expression and calculated values using the spherical standing wave model 

a: classical electron radius; b: Bohr radius; 𝛼: fine structure constant; 𝑞𝑒: elementary charge. 

 Expression Calculated values 

Wave number 𝑘 = 1 √𝑎𝑏⁄ = 1 𝛼𝑏⁄  2.589 605 0783 × 1012 m−1 

(Compton) Wavelength 𝜆 = 2𝜋√𝑎𝑏 = 2𝜋𝛼𝑏 2.426 310 2354 × 10−12 m 

Mass (ground) 𝑚 =
𝜇0
4𝜋
𝑞𝑒
2𝑘2𝑏(1 − 𝛼2) 9.108 898 6269 × 10−31 kg 

Mass (excited) 𝑚′ =
𝜇0
4𝜋
𝑞𝑒
2𝑘2𝑏 9.109 383 7139 × 10−31 kg 

Ionization energy −
𝑞𝑒
8𝜋𝜀0

⋅
1

𝑛2𝑏
 −13.605 693 123 𝑛−2 eV 

Rydberg constant 𝑅∞ =
𝛼

4𝜋𝑏
 1.097 373 1568 × 107 m−1 

 

Bohr's atomic model introduced a special assumption of quantum conditions instead of explaining why circu-

larly moving electrons do not emit electromagnetic waves. Conversely, no special assumptions are necessary for 

the spherical standing wave model, wherein the range of existence of the wave is determined through the reso-

nance conditions. 

The mass of an electron can be accurately calculated, and this mass is a physical quantity that changes depend-

ing on the energy state. The self-energy divergence problem of point electrons has been solved without using 

renormalization [16]. 

Herein, we presented two types of excited states. The ionization energy is generated by the energy difference 

between the ON and OFF states without a wave number change. The light energy generates the difference 

through the transition states with a wave number change. Ion and light energies are calculated as the differences 

in the electrical energy between the states. However, simultaneously, the same amount of change in the current 

energy occurs, indicating the presence of unobserved energy. 

The proposed model is compatible with quantum theory and relativity. Therefore, we expect to develop a the-

ory that connects micro [17-19] and macro [6, 19]. 
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