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Abstract:  Emotion recognition is rapidly advancing within the realm of artificial intelligence (AI), 

spurred by progress in deep learning, multimodal data handling, and broader availability of large 

datasets. This paper offers an in-depth overview of emotion recognition strategies, focusing on bio-

metric signals (e.g., audio, visual, physiological, and brain signals), conventional machine learning 

methods, and the latest deep learning architectures, including Transformers, two-dimensional Con-

volution Neural Networks (CNNs) 2D CNNs, and three-dimensional CNNs (3D CNNs). We further 

examine multimodal systems and the role of Large Language Models (LLMs) in merging textual, 

audio, and video information for more precise emotion assessments. Key challenges such as real-

time implementation, data biases, and cultural diversity are also highlighted. Ethical issues related 

to privacy and the potential misuse of emotion recognition technologies receive attention, as does a 

discussion of emerging applications in healthcare, human-computer interaction (HCI), mental 

health monitoring, and education. In sum, this review aims to contribute to the scholarly conversa-

tion around evolving emotion recognition methodologies and their applications in practical systems. 

Keywords:  Emotion recognition, Transformers, Biometric signals, Multimodal approach, Large 

Language Models, Sentiment Analysis, Human-Computer Interaction 

 

1. Introduction 

Emotions are central to human interaction, influencing our thought processes, choices, 

and social connections. Automated emotion recognition, which classifies or detects emo-

tional states algorithmically, has garnered growing interest in fields like psychology, AI, 

computer vision, speech processing, and computational neuroscience. Its adoption has 

the potential to transform multiple areas, such as HCI, mental health surveillance, e-learn-

ing, robotics, and entertainment. 

Earlier research in emotion recognition typically relied on facial expressions, voice sig-

nals, and physiological measurements through handcrafted features (e.g., facial action 

units, Mel-Frequency Cepstral Coefficients (MFCCs)). However, the emergence of deep 

learning—incorporating CNNs, Recurrent Neural Networks (RNNs), and Transformer-

based methods—has greatly increased accuracy and facilitated modeling of complex emo-

tional signals. Moreover, the incorporation of multiple modalities (e.g., text, video, audio, 

EEG) has delivered a more comprehensive analysis of affective states, significantly boost-

ing performance. 

This paper surveys emotion recognition technology, tracing developments from fea-

ture-based systems to modern deep learning and multimodal solutions. In particular, it 

underscores the role of LLMs in refining text-based and multimodal emotion recognition. 

Key issues like data imbalance, cross-cultural differences, user privacy, and real-time. 

2. Emotion Recognition Techniques 

Emotion recognition systems can be distinguished by input modality: audio, visual, 

physiological (EEG, GSR, ECG, etc.), or textual data. Increasingly, these modalities are 
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integrated for enhanced performance. Below, we provide a detailed look at different modalities and the impact 

of novel deep learning methods. 

2.1. Audio-Based Emotion Recognition 

2.1.1. Traditional Methods 

Handcrafted Features: Classic strategies for speech emotion recognition (SER) used features like MFCCs, pitch, 

and energy [1]. Classifiers such as SVMs and HMMs were often chosen to capture patterns in these traditional 

features [1]. 

Prosodic Features: Rhythm, stress, and intonation all reflect emotional states (e.g., intense emotional states may 

manifest as higher pitch or amplitude). 

2.1.2. Deep Learning Advancements 

1D CNNs and RNNs: Li et al. [2] employed RNN-based SER, illustrating advantages in modeling temporal 

variations in speech. In general, CNNs and RNNs (e.g., LSTMs or GRUs) have outperformed hand-engineered 

methods [3]. 

 
Figure 1. Deep Neural Network for speech emotion recognition [3]. 

Figure 1 illustrates the architecture of a deep neural network designed for speech emotion recognition. It 

highlights the process of segmenting audio signals, extracting spectral features, and employing layers of 

convolutional and recurrent neural networks to capture temporal dependencies, ultimately leading to emotion 

classification. 

2.1.3. Self-Supervised Transformer Models:  

Models like Wav2Vec 2.0 [4] and HuBERT [5] have set new benchmarks in speech representations, particularly 

in scenarios with limited labeled data. 

 
Figure 2. The HuBERT approach [5]. 
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Figure 2 presents the HuBERT pipeline for self-supervised speech representation learning. It shows how raw 

audio is first encoded via CNN, followed by a Transformer network that performs masked prediction using 

pseudo-labels generated through clustering. This iterative process refines the model's understanding of speech 

features, even in low-resource settings. 

2.1.4. Datasets 

Popular datasets in speech emotion recognition include (Ryerson Audio-Visual Database of Emotional Speech 

and Song (RAVDESS), Interactive Emotional Dyadic Motion Capture (IEMOCAP), and (Berlin Database of 

Emotional Speech (EmoDB), each containing diverse emotional categories and varying levels of speaker diversity 

[6]. 

2.2. Visual-Based Emotion Recognition 

Facial expression recognition (FER) remains a core topic due to the significance of facial cues. Major 

breakthroughs in computer vision have pushed FER systems to higher accuracy levels. 

2.2.1. CNN-Based Approaches 

2D CNNs: Used to learn spatial characteristics from static images (e.g., photographs or single video frames) [7]. 

3D CNNs: Fuse spatial and temporal dimensions by mapping multiple consecutive frames, enabling detection of 

micro-expressions over short durations [8]. 

2.2.2. Vision Transformers (ViTs) 

Self-Attention Mechanisms: ViTs directly apply Transformer architectures to image patches, capturing long-

range relations [9]. 

 
Figure 3. Model overview for Self-Attention Vision Transformer Mechanism [9]. 

This figure details the Vision Transformer (ViT) architecture. It depicts the process of splitting an image into 

patches, embedding these patches with positional information, and processing them through self-attention layers. 

The model’s ability to capture long-range dependencies is emphasized, making it effective for tasks such as facial 

emotion recognition. 

Data Requirements and Regularization: Large datasets or self-supervised pretraining (Self Distillation with no 

Labels (DINO [10]), and Masked Auto Encoder (MAE [11]) can mitigate overfitting by generating generalized 

representations. 

2.2.3. GANs for Data Augmentation 

Data Synthesis: GANs can generate diverse facial images under different emotional states [12]. Conditional GANs 

are especially helpful for balancing underrepresented categories. 

2.2.4. Datasets and Benchmarks 

Well-known visual emotion datasets include Extended Cohn-Kanade Dataset (CK+), AffectNet, Facial Expression 

Recognition 2013 (FER2013), and Real World Affective Database (RAF-DB). These datasets vary in resolution, 
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complexity, and the number of annotated emotion classes (e.g., basic emotions vs. compound emotional states) 

[13]. 

 

 
 

Figure 4. Human emotion states [13]. 

Figure 4 maps human emotions on a valence-arousal plane, providing a visual representation of how different 

emotions are distributed based on their positivity/negativity and intensity. It serves as a useful reference for 

understanding the underlying emotional dimensions used in many recognition models. 

2.3. Physiological and Brain Signal-Based Emotion Recognition 

Physiological signals, including Electroencephalography (EEG), Electrocardiography (ECG), Galvanic Skin 

Response (GSR), and Electromyography (EMG), often reflect genuine affective states, as they are more difficult 

to consciously control than facial or vocal cues. 

2.3.1. EEG-Based Recognition 

Signal Processing and Feature Extraction: Time-frequency transforms or spectrograms are widely used for EEG 

data [14]. 

CNNs and RNNs: CNNs capture spatial-spectral information, and RNNs model temporal behavior [15]. In 

addition, Transformers have been tested on EEG to identify correlations across electrodes [16]. 
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Figure 5. Overview of the CNN_LSTM Hybrid methodology [15]. 

Figure 5 demonstrates a hybrid architecture that combines Convolutional Neural Networks (CNNs) with Long 

Short-Term Memory (LSTM) networks for processing EEG signals. It outlines the stages from data preprocessing 

and feature extraction to sequential modeling and final classification, highlighting the synergy between spatial 

and temporal analysis. 

2.3.2. Transformer Architectures 

Recent studies leverage transformer models for EEG time series, using self-attention to capture relationships 

across electrodes and time steps [16]. This can improve classification accuracy in both offline and real-time 

systems.  

2.3.3. Datasets 

Common EEG-based emotion datasets include Database for Emotion Analysis using Physiological Signals 

(DEAP), SJTU Emotion EEG Dataset (SEED), Database for Emotion Recognition Through EEG and 

ECG(DREAMER), and Dataset for Affect, Personality, Mood, and Engagement (AMIGOS), featuring recordings of 

participants exposed to emotional stimuli such as music videos or film clips [17]. 

 
Figure 6. EEG Topographic Maps Showing Brain Frequency [17]. 
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This figure presents topographic maps of the brain, illustrating the spatial distribution of EEG frequency bands 

across the scalp. It visually correlates specific frequency responses with different emotional states, offering 

insights into the neural dynamics that underpin affective processing. 

2.3.4. Other Physiological Signals 

ECG and GSR: Heart rate variability and skin conductance can correlate with emotional intensity [18]. 

EMG: Facial electromyography (fEMG) can tracks subtle facial muscle movement that may elude standard visual 

analysis [19]. 

2.4. Text-Based Emotion Recognition 

Text-based approaches detect emotional or affective content from written or transcribed speech. Modern large-

scale language models have dramatically boosted accuracy. 

2.4.1. Classical NLP Methods 

Lexicon-Tools: Simple features such as Bag-of-Words, TF-IDF, or lexicons were common historically but can fail 

with sarcasm or sophisticated language structures [20]. 

2.4.2. Transformer-Based Models 

BERT, GPT, and Variants: Fine-tuning these large pre-trained networks on emotion-tagged data (e.g., MELD, 

DailyDialog) has yielded substantial improvements [21, 22]. 

 
Figure 7. BERT architecture for emotion recognition [21]. 

This diagram outlines the BERT model’s structure as applied to emotion recognition. It shows how text inputs 

are tokenized and embedded, then processed through multiple Transformer layers with self-attention 

mechanisms, culminating in a classification head that assigns emotion labels based on contextual cues. 

2.4.3. Contextual Understanding 

Self-attention enables capturing more context, which is crucial for irony, slang, and hidden emotional nuances 

[23]. 

3. Multimodal Approaches Using Large Language Models (LLMs) and Video Data 

The multimodal fusion of textual, audio, visual, and physiological signals has gained momentum due to its ability 

to model emotional states more comprehensively and robustly. This section focuses on how Large Language 

Models (LLMs) and advanced video-based architectures contribute to enhanced multimodal emotion recognition. 

3.1. Text and Video-Based Emotion Recognition 

3.1.1. CLIP and Video Vision Transformers (ViViT) 

CLIP (Contrastive Language-Image Pretraining): Proposed by Radford et al. [24], CLIP learns joint 

representations of images and text via a contrastive objective on large-scale web data. While initially designed 

for zero-shot image classification, CLIP embeddings have proven valuable in emotion recognition tasks where 

textual and visual cues must be aligned. 
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ViViT (Video Vision Transformer): ViViT extends transformer-based approaches to video by modeling 

spatiotemporal features. By leveraging self-attention across video frames, it can capture changes in facial 

expressions, body language, and scene context [25]. 

 
Figure 8. ViViT Factorised Encoder (Model 2) [25]. 

Figure 8 details the ViViT model for video-based emotion recognition. It highlights how the model factorizes 

video input into spatial and temporal components, processing each through specialized Transformer encoders to 

capture dynamic facial expressions and body language over time. 

Multimodal Alignment: By combining CLIP and ViViT, researchers can exploit large-scale pretrained 

representations of language and video, mapping textual emotional cues (e.g., transcripts or textual descriptions) 

to visual patterns of expression for improved accuracy. 

3.1.2. Applications and Datasets 

Multimodal Emotion Lines Dataset (MELD): Originally created for multimodal sentiment and emotion analysis 

in multi-speaker dialogues, MELD includes synchronized audio, video, and transcripts from TV show episodes 

[26] as shown in Figure 9. 

 

Figure 9. Example from MELD [26]. 

This example from the MELD dataset shows a multimodal dialogue scenario, where synchronized audio, video, 

and textual data are aligned. It exemplifies how different modalities are integrated to improve the accuracy and 

contextual understanding of emotion recognition in conversational settings. 

Interactive Scenarios: In social robotics and VR-based training, the fusion of textual and video inputs helps 

systems respond more empathetically to user emotions [27]. 
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3.2. Combining Audio, Visual, and Textual Inputs 

3.2.1. Transformer Fusion Networks 

Transformer fusion networks employ cross-attention or co-attention mechanisms to merge embeddings from 

different modalities, such as speech spectrograms, video frames, and text transcripts [28]. By jointly learning these 

modalities, the system can capture correlated features (e.g., tone of voice matching facial expressions) more 

effectively. 

 

Figure 10. Graph Neural Network for emotion recognition [28]. 

In Figure 10, this diagram illustrates a Graph Neural Network (GNN) architecture tailored for multimodal 

emotion recognition. It demonstrates how visual and textual features are represented as nodes and edges within 

a graph, enabling the model to capture complex interdependencies between modalities for more robust emotion 

inference. 

3.2.2. Multimodal Large Language Models (MLLMs) 

GPT-4 and Beyond: Recent large-scale models, such as GPT-4 [29], incorporate additional capabilities to handle 

diverse input forms, including images and structured data. When paired with specialized encoders for audio or 

video, GPT-4 can produce holistic emotional inferences that account for both context and nuance. 

Benefits of LLMs are as follows. 

Context-Rich Understanding: LLMs excel at capturing contextual information from text, thus bridging semantic 

gaps between language and other modalities. 

Transfer Learning Potential: With instruction-tuning or few-shot learning, MLLMs can adapt to new emotion 

recognition tasks with minimal labeled data. 

4. Key Challenges in Emotion Recognition 

Despite notable progress, several significant challenges must be addressed to achieve robust, scalable, and 

ethically sound emotion recognition systems. 

4.1. Dataset Biases 

4.1.1. Demographic Bias 

Variations in emotional expression across age, gender, and ethnicity can lead to dataset imbalances. For instance, 

many facial expression datasets contain predominantly younger subjects of certain ethnicities [30]. 

4.1.2. Contextual Bias 

Certain datasets capture emotions in controlled environments that do not necessarily generalize to real-life 

settings (e.g., acted expressions vs. spontaneous expressions) [31]. 

4.1.3. Mitigation Strategies 

Methods such as data augmentation, domain adaptation, and bias-aware training (e.g., adversarial debiasing) 

can help reduce performance gaps [32]. 

4.2. Cross-Cultural Variations 

4.2.1. Universal vs. Culture-Specific Expressions 

While certain facial expressions may be universal (e.g., happiness, sadness), subtle cues can differ widely across 

cultures. Models trained on a single cultural context may not generalize to others [33]. 
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4.2.2. Linguistic Nuances 

In text-based analysis, idiomatic expressions, emoticons, or culturally specific references can confound emotion 

classifiers. 

4.2.3. Potential Approaches 

Cross-cultural dataset collection (e.g., from multilingual or multicultural sources), multi-language pretrained 

LLMs, and culture-adaptive models can address these variations [34]. 

4.3. Real-Time Performance 

4.3.1. Computation and Latency 

Emotion recognition in real-time systems, such as social robotics or wearable devices, demands computationally 

efficient models. 

4.3.2. Lightweight Architectures 

Model compression techniques (e.g., quantization, knowledge distillation) and real-time capable neural 

architectures are key to deploying emotion recognition on resource-constrained devices [35]. 

 
 

Figure 11. Facial cube [35]. 

They introduce the concept of constructing a "facial cube" by stacking sequential video frames to capture subtle, 

micro-expressions as shown in Figure 11. It shows how spatial and temporal information is combined to detect 

fleeting emotional cues that may not be visible in isolated images. 

4.4. Privacy and Ethical Concerns 

4.4.1. Informed Consent  

Recording and analyzing individuals’ emotional states can be intrusive. 

4.4.2. Misuse and Surveillance  

Unchecked use of emotion recognition in surveillance or advertising raises ethical questions regarding autonomy 

and potential misuse. 

4.4.3. Regulatory Frameworks 

Governments and organizations must develop guidelines to ensure responsible deployment of affective 

computing systems [36]. 
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5. Applications and Future Directions 

5.1.  Applications 

5.1.1. Healthcare and Mental Health 

Depression Detection: Continuous monitoring of emotional cues in speech, facial expressions, or physiological 

signals can aid early detection of depression and other mental health disorders [37]. 

Telemedicine: Emotion-aware virtual assistants can enhance remote patient consultations, providing clinicians 

with additional diagnostic information. 

5.1.2. Human-Computer Interaction (HCI) 

Adaptive Interfaces: Emotion recognition can enable adaptive user interfaces that respond to the user’s emotional 

state, improving usability and user satisfaction. 

Virtual Assistants: Personal assistants (e.g., Alexa, Siri) may use emotional cues to respond more empathetically. 

5.1.3. Education 

E-Learning: Tracking student engagement and frustration can help tailor teaching materials and provide real-

time feedback to educators [38]. 

Intelligent Tutoring Systems: Emotion-sensitive tutoring systems can adapt lesson difficulty and provide 

motivational support. 

5.1.4. Entertainment and Gaming 

Personalized Content: Streaming platforms can recommend content aligned with a user’s emotional state, 

potentially increasing user engagement. 

Interactive Gaming: Emotionally responsive games that adapt narratives or difficulty based on player affect. 

5.2. Future Research Directions 

5.2.1. Explainable Emotion Recognition 

Interpretability methods (e.g., attention visualization, saliency maps) can increase trust in deep learning-based 

systems, particularly in high-stakes applications such as healthcare. 

5.2.2. Long-Term Emotion Tracking 

Most current work focuses on short-term or discrete emotion recognition. Future systems should model affective 

trajectories over extended periods to capture more complex emotional phenomena [39]. 

5.2.3. Fusion of Wearable Sensors 

Integrating additional signals from wearables (e.g., smartwatches, electrodermal activity sensors) could enhance 

real-time emotion monitoring in daily life. 

Multicultural and Multilingual Models: Broadening dataset diversity and building culture-aware models remain 

critical for global deployment. 

LLMs for Multi-Modal Conversational Analysis: Future LLMs may incorporate advanced fusion mechanisms, 

seamlessly integrating multiple modalities (video, audio, text, EEG) in more human-like conversational interfaces 

[40]. 

6. Conclusion 

Over the years, emotion recognition has progressed from simple feature extraction to sophisticated deep learning 

and multimodal fusion approaches. Transformers, including Vision Transformers and self-supervised models 

such as Wav2Vec 2.0, have expanded capabilities to unify audio, text, and visual information. However, practical 

applications still face challenges regarding fairness, cross-cultural adaptability, latency constraints, and ethical 

dilemmas. Achieving transparent, bias-aware, and privacy-respecting solutions is critical for future expansion. 

With continued investigation into interpretable AI methods, model efficiency, and culturally balanced datasets, 

emotion recognition systems will likely become increasingly robust and influential. By bridging fundamental 

research and real-world implementation, these systems hold immense promises for healthcare, HCI, education, 

and beyond. 
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